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6



Scientific Committee

Martin Bohner (Chair)
Missouri University of Science and Technology, USA

Mário Bessa
University of Beira Interior, Portugal

Zuzana Dosla
Masaryk University, Czech Republic

Saber Elaydi
Trinity University, USA

Stefan Hilger
Katholische Universität Eichstätt-Ingolstadt, Germany

Donal O’Regan
National University of Ireland, Ireland

César Silva
University of Beira Interior, Portugal

Chris Tisdell
University of New South Wales, Australia

7





Organizing Committee

Rui Ferreira (Chair)
University of Lisboa, Portugal

António J. G. Bento
University of Beira Interior, Portugal

Gastão Bettencourt
University of Beira Interior, Portugal

Pedro Patŕıcio
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Covilhã, 15–18 June, 2015 Progress on Difference Equations

Recent Results and Improvements of Dynamic
Opial-Type Inequalities

Martin Bohner
bohner@mst.edu

Department of Mathematics and Statistics
Missouri University of Science and Technology

Rolla, Missouri 65409-0020

USA

Abstract

We give an overview of classical Opial inequalities both in the continuous and the
discrete case, then extend the inequality to the dynamic case on time scales. We
give many extensions of this inequality, among them extensions to the weighted case
with one or two weights and the case involving higher-order derivatives. We also offer
improvements of these inequalities, so-called Shum-type inequalities on time scales.
Some applications contain the study of disconjugacy and disfocality of second-order
dynamic equations on time scales. Nabla and diamond-alpha versions of the presented
inequalities will be discussed as well.
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Towards a theory of global dynamics in difference
equations: Application to population dynamics

Saber Elaydi
selaydi@trinity.edu

Trinity University
San Antonio

USA

Abstract

Global dynamics of difference equations/discrete dynamical systems are the most
challenging problems in these disciplines. In this talk, we will explore some of the
recent breakthroughs and advances in this area. The global dynamics of two types
of discrete systems (maps) have been successfully established. These are triangular
difference equations (maps) and monotone discrete dynamical systems (maps). We
establish a general dynamical theory of triangular maps with minimal conditions.
Smiths theory of planar monotone discrete dynamical systems is generalized via a
new geometric theory to any finite dimension. Then we show how to establish global
dynamics for maps that are neither monotone nor triangular via singularity theory
and the notion of critical curves.

Applications to hierarchical competition models as well as predator-prey models will
be discussed.
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(q;h)–Weyl Algebras

Galina Filipuk
G.Filipuk@mimuw.edu.pl

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw, Banacha 2

Warsaw, 02-097

Poland

Abstract

In this talk I shall present (q;h)–deformed Weyl algebra and its properties and rep-
resentations, show the connection to the qdeformed universal enveloping algebra and
discuss the factorisation of the (q;h)–difference equations.

References

[1] S. Hilger, G. Filipuk, Factorization of (q;h)–difference operators – an algebraic ap-
proach, J. Difference Eq. Appl. 20 (8) (2014), 1201–1221.

[2] S. Hilger, G. Filipuk, R. Kycia, A. Dobrogowska, On the (q;h)–discretization of ladder
operators, International Journal of Difference Equations 9 (1) (2014), 67–76.

[3] G. Filipuk, S. Hilger, Linear graininess time scales and ladder operators of orthogonal
polynomials, Results in Mathematics 64 (2013), 13–35.

[4] S. Hilger, G. Filipuk, Algebra embedding of Uq(sl(2)) into the tensor product of two
(q;h)–Weyl algebras, submitted.

[5] G. Filipuk, S. Hilger, A remark on the tensor product of two (q;h)–Weyl algebras,
submitted.
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Non-integrability of some difference equations

Armengol Gasull
gasull@mat.uab.cat

Departament de Matemàtiques
Universitat Autònoma de Barcelona

08193 Bellaterra
Barcelona

Spain

Abstract

We consider the problem of characterizing, for certain natural number m, the local
Cm-non-integrability near elliptic fixed points of smooth planar measure preserving
maps. Our criterion relates this non-integrability with the existence of some Lie
Symmetries associated to the maps, together with the study of the finiteness of its
periodic points. Our main result is:
Theorem Let F be a C2n+2-planar map defined on an open set U ⊆ R2 with an elliptic
fixed point p, not (2n + 1)-resonant, and such that its first non-vanishing Birkhoff
constant is Bn = i bn, for some 0 < n ∈ N and bn ∈ R \ {0}. Moreover, assume
that F is a measure preserving map with a non-vanishing density ν ∈ C2n+3. If, for
an unbounded sequence of natural numbers {Nk}k, F has finitely many Nk-periodic
points in U then it is not C2n+4-locally integrable at p.
This criterion can be applied to prove that the Cohen map

F (x, y) =
(

y,−x+
√

y2 + 1
)

,

is not C6-locally integrable at its fixed point. Similarly we obtain non-integrability
results for rational maps of the forms

F (x, y) =

(

y,
f(y)

x

)

and F (x, y) = (y,−x+ f(y)) . (1)

Note that the above maps contain Lyness and McMillan-Gumowski-Mira type differ-
ence equations.
This talk is based on a joint work with Anna Cima and Vı́ctor Mañosa.
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Dynamics and vaccination games

Alberto Pinto
aapinto@fc.up.pt

Faculty of Sciences
University of Porto

Porto
Portugal

LIAAD-INESC TEC
Porto

Portugal

Abstract

In general, the vaccination risks are over valorized regarding the vaccination benefits.
When vaccination is voluntary, we study people decisions with respect to vaccination.
The decision of an individual is influenced by the morbidity risks from vaccination, but
also by the morbidity risks from infection and by the decisions of all other people. In
this work, we make a game theoretical analysis of people decisions and take a special
emphasis on the effects of vaccine scares and the effects of education programs. We
introduce the ODE for the dynamic evolution of an individual vaccination strategy and
observe that the stable equilibria of the ODE are the evolutionary stable strategies.
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Nonautonomous Dynamics at work:
Analytical and numerical analysis of a

population-dynamical model

Christian Pötzsche
christian.poetzsche@aau.at

Institut für Mathematik
Alpen-Adria Universität Klagenfurt

9020 Klagenfurt

Austria

Abstract

We apply various numerical and analytical tools to obtain an insight into the local and
global dynamics of a discrete-time planar model from population dynamics with ape-
riodic coefficients. Due to the lack of equilibria and the insignificance of eigenvalues,
we employ numerical schemes to approximate entire solutions, their dichotomy spec-
tra, as well as the corresponding invariant manifolds. Moreover, we aim to illustrate
the existing bifurcation theory for nonautonomous difference equations.
This talk is based on a joint work with Thorsten Hüls.

References

[1] T. Hüls and C. Pötzsche.Qualitative analysis of a nonautonomous Beverton-Holt Ricker
model. SIAM J. Applied Dynamical Systems 13(4) (2014), 1442–1488
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Anosov diffeomorphisms and tilings

João P. Almeida1

jpa@ipb.pt

LIADD - INESC TEC and Department of Mathematics
Polytechnic Institute of Bragança

Bragança

Portugal

Abstract

We consider a toral Anosov automorphism G : T → T given by G(x, y) = (ax+ y;x),
where a > 1 is a fixed integer, and introduce the notion of γ-tiling to prove the
existence of a one-to-one correspondence between (i) smooth conjugacy classes of
Anosov diffeomorphisms with invariant measure absolutely continuous with respect
to the Lebesgue measure and topologically conjugate to G, (ii) affine classes of -
tilings and (iii) solenoid functions. Solenoid functions provide a parametrization of the
infinite dimensional space of the mathematical objects described in these equivalences.
This talk is based on a joint work with Alberto Pinto

References

[1] Pinto, A. A. and Almeida, J. P. : Anosov dffeomorphisms and γ-tilings. (submitted)
[2] Pinto, A. A., Almeida, J. P. and Portela, A.: Golden tilings. Transactions of American

Mathematical Society, 364 (2012) 2261-2280.
[3] Pinto, A. A., Rand, D. A., Ferreira, F.: Fine structures of hyperbolic diffeomorphisms,

Springer Monograph in Mathematics, Springer Verlag (2009).
[4] Pinto, A. A. and Rand, D. A.: Teichmüller spaces and HR structures for hyperbolic

surface dynamics. Ergod. Th. Dynam. Sys. 22, 1905–1931 (2002).

1This work was supported by the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project UID/EEA/50014/2013 and ERDF - Euro-
pean Regional Development Fund through the COMPETE Program (operational program for com-
petitiveness) and by National Funds through the FCT within Project “Dynamics and Applications”
with reference PTDC/MAT/121107/2010.
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On the solutions of a discrete Schrödinger equation

Sigrun Bodine
sbodine@pugetsound.edu

Department of Mathematics and Computer Science
University of Puget Sound

Tacoma, WA 98416

USA

Abstract

This talk is concerned with the asymptotic behavior of solutions of the scalar second-
order difference equations of the form

un+1 + un−1 − qnun = 0, (1)

initially studied by Stepin and Titov [1]. They derived the asymptotic behavior of
solutions under the assumptions that qn > 0 for all n and that certain summability
conditions of products of q−1

n such as
∑

∞

n=1 (qnqn−1)
−1

< ∞ hold. In [2], we took a
different approach to the study of this class of difference equations, which allowed us
us to extend some of their results.
Related results also apply to

wn+1 + anwn−1 − bnwn = 0, n ≥ 0,

which can be reduced to (1). Here an and bn are supposed to be positive and to
satisfy related summability conditions.
This talk is based on joint work with D.A. Lutz from San Diego State University.

References

[1] S.A. Stepin and V.A. Titov: Dichotomy of WKB–solutions of discrete Schrödinger
equation, Journal of Dynamical and Control Systems, Vol. 12 (2006), pp. 135–144.

[2] S. Bodine and D.A. Lutz, Asymptotic Integration of Differential and Difference Equa-
tions, Springer, Lecture Notes in Mathematics, New York, 2015.
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A note on the onset of synchrony in avian ovulation
cycles

Danielle Burton1

dburton3@utk.edu

Department of Mathematics
University of Tennessee

Knoxville, TN

USA

Abstract

Spontaneous oscillator synchrony occurs when populations of interacting oscillators
begin cycling together in the absence of environmental forcing. Synchrony has been
documented in many physical and biological systems, including estrous/menstrual
cycles in rats and humans. In previous work we showed that Glaucous-winged Gulls
(Larus glaucescens) can lay eggs synchronously on an every-other-day schedule, and
that synchrony increases with colony density. Here we pose a discrete-time model of
avian ovulation to study the dynamics of synchronization. We prove the existence and
uniqueness of an equilibrium solution which bifurcates to increasingly synchronous
cycles as colony density increases.
This talk is based on joint work with Shandelle M. Henson, Professor of Mathematics
and Chair Department of Mathematics, Andrews University, MI, USA.

References

[1] D. Burton and S. M. Henson, A note on the onset of synchrony in avian ovulation cycles,
Journal of Difference Equations and Applications, Vol. 20, No. 4 (2014), pp. 664-668.

1This work was partial supported by the National Science Foundation (DMS-0613899) and by
Andrews University Faculty Grants
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Effects of treatment, awareness and condom use in
a coinfection model for HIV and HCV in MSM

Ana RM Carvalho1

up200802541@fc.up.pt

Department of Mathematics
Faculty of Sciences
University of Porto

Porto

Portugal

Abstract

We develop a new a coinfection model for hepatitis C virus (HCV) and the human
immunodefficiency virus (HIV). We consider treatment for both diseases, screening,
unawareness and awareness of HIV infection, and the use of condom. We study
the local stability of the disease-free equilibria for the full model and for the two
submodels (HCV only and HIV only submodels). We sketch bifurcation diagrams
for different parameters, such as the probabilities that a contact will result in a HIV
or an HCV infection. We present numerical simulations of the full model where the
HIV, HCV and double endemic equilibria can be observed. We also show numerically
the qualitative changes of the dynamical behavior of the full model for variation of
relevant parameters. We extrapolate the results from the model for actual measures
that could be implemented in order to reduce the number of infected individuals.

1This work was partial supported by a FCT grant with reference SFRH/BD/96816/2013
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On para-orthogonal polynomials on the unit circle
and related questions

Kenier Castillo1

kcastill@math.uc3m.es

Centre for Mathematics
University of Coimbra

Coimbra

Portugal

Abstract

Our goal is to provide the para-orthogonality [1] theory, in the context of moment
linear functional, with recurrence relation and the analog result to the classical Favard
Theorem or Spectral Theorem.
This talk is based on a joint work with R. Cruz-Barroso and F. Perdomo-Pı́o.

References

[1] W. B. Jones, O. Nj̊astad, and W. J. Thron. Moment theory, orthogonal polynomials,
quadrature, and continued fractions associated with the unit circle. Bull. London Math.
Soc., 21: 113–152, 1989.

1This work was partial supported by Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico of Brazil and Dirección General de Investigación, Ministerio de Economı́a y Competitividad
of Spain under grant MTM2012-36732-C03-01.
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Finding Invariant Fibrations for some
Birational Maps of C2

Anna Cima
cima@mat.uab.cat

Department of Mathematics
Autonomous University of Barcelona

Bellaterra, Barcelona

Spain

Abstract

Consider the family of fractional maps

f(x, y) =

(

α0 + α1x+ α2y,
β0 + β1x+ β2y

γ0 + γ1x+ γ2y

)

, (1)

where the parameters are complex numbers. In the paper ”Dynamical classification
of a Family of Birational Maps of C2 via algebraic entropy”, see [1], the authors find
the algebraic entropy of such maps depending on the parameters.
The algebraic entropy is defined as the logarithm of the dynamical degree, δ(F ), which
in turn is defined as

δ(F ) := lim
n→∞

(deg(Fn))
1

n . (2)

Birational maps with zero algebraic entropy are classified in three types, depending
on the growth rate of the sequence of degrees, see [2]:

• The sequence of degrees grows linearly and f preserves a unique fibration given
by curves of genus zero.

• The sequence of degrees grows quadratically and f preserves a unique fibration
given by curves of genus one.

• The sequence of degrees is bounded and f preserves two fibrations generically
transverse.

In this talk I’m going to explain how we find the invariant fibrations of some maps of
the form (1).
This talk is based on a joint work with Sundus Zafar.

References

[1] Cima A. and Zafar, S., Dynamical classification of a Family of Birational Maps of C2

via Algebraic Entropy, Preprint, 2014.
[2] Diller, J. and Favre, C. , Dynamics of bimeromorphic maps of surfaces, Amer. J. Math.,

Vol.123, (2001), pp. 1135–1169.
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Factorization method applied to the second order
q-difference operators

Alina Dobrogowska
alaryzko@alpha.uwb.edu.pl

Institute of Mathematics
University of Bia lystok

Bia lystok

Poland

Abstract

We present certain classes of second order q-difference operators, which admit fac-
torization into first order operators acting in a Hilbert space. By solving an infinite
nonlinear system of q-difference equations one constructs a chain of q-difference op-
erators. The eigenproblems for the chain are solved and some applications, including
the ones related to q-Hahn orthogonal polynomials, q– Morse potential, are discussed.
We also discuss classical limit case by letting q → 1. It is shown that in the limit the
present method corresponds to the one developed by Infeld and Hull.

References

[1] A. Dobrogowska, A. Odzijewicz, Second order q-difference equations solvable by factor-
ization method. J. Comput. and Appl. Math., 193:319–346, 2006.

[2] A. Dobrogowska, A. Odzijewicz, Solutions of the q-deformed Schrrödinger equation for
special potentials, J. Phys. A: Math. Theor., 40:2023–2036, 2007.

[3] A. Dobrogowska, The q-deformation of the Morse potential, Appl. Math. Lett., 7:769–
773, 2013.

[4] A. Dobrogowska, G. Jakimowicz, Factorization method applied to the second order
q-difference operators, Appl. Math. Comput., 228:147-152, 2014.

[5] L. Infeld, T.E. Hull, The Factorization Method, Rev. Mod. Phys., 23:21-68, 1951.
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The numerical solutions for a system of fuzzy
differential equations by fuzzy Laplace transform

method

ELhassan ELJAOUI
eljaouihass@gmail.com

Department of Mathematics, Laboratoire de Mathématiques Appliquées & Calcul
Scientifique

University of Sultan Moulay Slimane
Beni Mellal

Morocco

Abstract

The fuzzy Laplace transform algorithm is one of the appropriate methods to study
linear or nonlinear differential problems, in both crisp and fuzzy cases.
In this paper, we use the fuzzy Laplace transform method, introduced by the au-
thors in [2], to calculate exact solutions of a system of fuzzy linear differential equa-
tions, under generalized Hukuhara differentiability, using respectively Hukuhara and
Minkowski differences. Then, we establish a comparison between the intervals of
obtained solutions.
This talk is based on a joint work with S.MELLIANI and L.S. CHADLI.

References

[1] S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso and J.J.Nieto, Numerical methods
for fuzzy differential inclusions, Comput.Math.Appl., Vol. 48 (2004), pp. 1633–1641.

[2] T. Allahviranloo , M. B. Ahmadi, Fuzzy Laplace transforms, Soft Computing, Vol. 14
(2010), pp. 235-243.

[3] T. Allahviranloo , S. Abbasbandy, S. Salahshour and A. Hakimzadeh, A new method
for solving fuzzy linear differential equations, Computing, Vol. 92 (2011), pp. 181–197.

[4] T. Allahviranloo , N. Ahmady and E. Ahmady, Numerical solution of fuzzy differential
equations by predictor-corrector method, Information Sciences Vol. 177 (2007), pp.
1633–1647.

[5] T. Allahviranloo, N. A. Kiani and N. Motamedi, Solving fuzzy differential equations by
differential transformation method, Information Sciences Vol. 179 (2009), pp. 956–966.

[6] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., Vol. 12 (1965),
pp. 1–12.

[7] B. Bede and S. G. Gal, Generalization of the Differentiability of Fuzzy-Number-Valued
Functions with Applications to Fuzzy Differentiel Equations, Fuzzy Sets and Systems,
Vol. 151 (2005), pp. 581–599.

[8] B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations
under generalized differentiability, Inf. Sci., Vol. 177 (2006), pp.1648–1662.

[9] Y. Chalco-Cano and H. Roman-Flores, On new solutions of fuzzy differential equations,
Chaos Solitons Fractals, Vol. 38 (2006), pp. 112-119.
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Abstract

During the talk a new notion of the practical invariance (viability) of fractional
discrete-time linear and nonlinear systems is introduced. The invariance is consid-
ered on polyhedral sets. Sufficient conditions for both, linear and nonlinear fractional
systems, providing practical invariancy are given.
This talk is based on a joint work with Dorota Mozyrska.

1This work was supported by Bia lystok University of Technology grants G/WM/3/12 and
S/WI/02/2011.
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Abstract

This paper deal with form, the periodicity and the stability of the solutions of the
systems of difference equations

xn+1 =
1

1 + yn−2
, yn+1 =

1

1 + xn−2
, n,∈ N0,

where N0 = N∪ {0} and the initial conditions x−2, x−1, x0, y−2, y−1, and y0 are non
zero real numbers.
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Abstract

The notion of distributional chaos was introduced by Schweizer and Smı́tal in [1] for
continuous maps of the interval. However, it turns out that, for continuous maps of a
compact metric space three mutually nonequivalent versions of distributional chaos,
DC1 – DC3, can be considered.
The talk will be devoted to the recent results concernig the weakest form of distri-
butional chaos (denoted by DC3). We show that in a general compact metric space,
distributional chaos of type 3, even when assuming existence of an uncountable scram-
bled set, is a very weak form of chaos. In particular, (i) the chaos can be unstable
(it can be destroyed by conjugacy), and (ii) such an unstable system may contain no
Li-Yorke pair. However, definition can be strengthened to get DC2 1

2 which is topo-
logical invariant and implies Li-Yorke chaos, similarly as types DC1 and DC2, but
unlike them, strict DC2 1

2 systems must have zero topological entropy.

References

[1] B. Schweizer, J. Smı́tal Measures of chaos and a spectral decomposition of dynamical
systems on the interval, Trans. Amer. Math. Soc., Vol. 344 (1994), pp. 737–754.

38
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Abstract

In this study we focus on establishing sufficient conditions for Mittag–Leffler stability
and global stability. We give stability conditions for the solutions of both Caputo
type and Riemann–Liouville type fractional order delta dynamic equations on time
scales.
This talk is based on a joint work with Deniz Uçar.
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Abstract

Using tools of the theory of orthogonal polynomials and somes results in [1], we obtain
the generating function of the generalized Fibonacci sequence established in [2] for a
sequence of real or complex numbers {Qn}

∞

n=0 defined by

Q0 = 0, Q1 = 1, Qm = ajQm−1 + bjQm−2, m ≡ j(mod k),

where k ≥ 3 is a fixed integer, and a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 are 2k given real or
complex numbers, with bj 6= 0 for 0 ≤ j ≤ k− 1. For this sequence some convergence
proprieties are obtained.
This talk is based on a joint work with Armando Gonçalves (Department of Mathe-
matics, University of Coimbra, Portugal).
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Abstract

We develop a third (fourth) order accurate new finite difference scheme for the nu-
merical solution of the Poisson equation in polar coordinate. The method is refined
in such a manner so that it is applicable to both singular and non-singular cases,
while order and accuracy being unchanged. The special character of the geometric
mesh ratio parameter will take care of interior or boundary layers, if any. A detailed
convergence theory for the difference scheme has been developed based on monotone
and irreducible property of the iteration matrices. Numerical accuracy of the solu-
tions has been obtained that shows the applicability of the scheme in the presence of
singularity and thin layers.
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Abstract

We investigate the boundedness and persistence of solutions, the global stability of the
positive fixed point and the occurrence of periodic solutions for the rational difference
equation

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C

with non-negative parameters and initial values. We establish that when the function
defining the difference equation is monotone in its arguments, the equation does not
have any periodic solutions of period greater than two and in the absence of two-
cycles, the solutions converge to the unique positive fixed point. In addition, we show
that the above results can be used in the study of several distinct classes of planar
systems.
This talk is based on a joint work with Hassan Sedaghat.
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Covilhã, 15–18 June, 2015 Progress on Difference Equations

On quasi-periodicity properties of fractional sums
and fractional differences of periodic functions

Jorge Losada1

jorge.losada@rai.usc.es

Departamento de Análise Matemática
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Abstract

This talk is related with discrete fractional calculus [1]; our goal is to investigate
quasi-periodic properties of fractional order sums and differences of periodic func-
tions. Using Riemann-Liouville and Caputo type definitions, we study concepts
close to the well known idea of periodic function, such as asymptotically periodic-
ity or S-asymptotically periodicity. We use basic tools of discrete fractional calculus.
Boundedness of sums and differences of fractional order of periodic functions are also
investigated.
It is an obvious fact that the classical derivative, if it exists, of a periodic function
is also a periodic function of the same period. Moreover, the primitive of a periodic
function may be periodic. The same holds also for difference and sum operators.
Nevertheless, when we consider derivatives or integrals of non integer order, this is
not true (see, for example, [2, 3]). In [4], we have studied some properties of fractional
integrals and derivatives of periodic functions.
Motivated by [4, 5], we present here the analogous results in the field of discrete
fractional calculus. We also point out one important difference between continuum
and discrete fractional operators.
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Abstract

We analyze bounded confidence models on time scales. In such models each agent
takes into account only the assessments of the agents whose opinions are not too far
away from his own opinion. We prove a convergence into clusters of agents, with
all agents in the same cluster having the same opinion. The necessary condition for
reaching a consensus is given. Simulations are performed to validate the theoretical
results.
This talk is based on a joint work with E. Girejko, L. M. F. Machado and N. Martins.
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Covilhã, 15–18 June, 2015 Progress on Difference Equations

Fronts and pulses that fail to propagate in discrete
inhomogeneous media

Brian E. Moore1

brian.moore@ucf.edu

Department of Mathematics
University of Central Florida

Orlando, Florida

USA

Abstract

Bistable differential-difference equations are often used to model the conduction of
electrical impulses in the nervous system. One characteristic of diseases that affect
the nervous system is that a portion of the medium for conduction is deteriorated,
and it is particularly interesting to understand what causes electrical impulses to fail
to propagate under these circumstances. This leads to the study of a second order
difference equation that is semi-linear, inhomogeneous, and has boundary conditions
at infinity. A thorough study of the exact solutions of this system provides neces-
sary and sufficient conditions for fronts [1] and pulses [2] to fail to propagate due to
inhomogeneities in the medium.
This talk is based on joint work with A.R. Humphries, J.M. Segal, and E.S. Van Vleck
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Abstract

The problem of the stability of the Caputo– and Riemann-Liouville–type linear
discrete-time systems with fractional positive orders is discussed. We present the
method of reducing the fractional order of the considered systems by transforming
them to the multi-order linear systems with the partial orders from the interval (0, 1].
For the constructed multi-order systems the conditions for the stability of the consid-
ered linear systems are formulated based on the Z-transform, that is considered as
an effective method for stability analysis of linear systems. Finally, the presented ex-
amples show the conditions for asymptotic stability for some classes of the fractional
linear systems with positive orders.
This talk is based on a joint work with Ma lgorzata Wyrwas.
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Abstract

This talk is based on the joint paper [1] with Tomasz Goliński where we developped
the theory of equations of the form

α(x)ψ(τ(x)) + β(x)ψ(x) + γ(x)ψ(τ−1(x)) = λψ(x)

generated by a bijection τ : X → X of the real line subset X ⊂ R.
The equations of this type can be regarded as an alternate discretization of the sec-
ond order differential equations including Schrödinger equation and generalization of
difference and q-difference equations. They also emerge from the change of variables
in difference equations. On the other hand the functional equations by themselves
are of interest and have many important applications. They have been investigated
in many monographs and papers from the point of view of functional analysis, espe-
cially C∗-algebras methods. We hope that our approach can be applied also in the
numerical analysis of some problems.
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Abstract

We present a new type of fractional operator, the Caputo–Katugampola derivative.
The Caputo and the Caputo–Hadamard fractional derivatives are special cases of
this new operator. An existence and uniqueness theorem for a fractional Cauchy
type problem, with dependence on the Caputo–Katugampola derivative, is proven.
A decomposition formula for the Caputo–Katugampola derivative is obtained. This
formula allows us to provide a simple numerical procedure to solve the fractional
differential equation.
This talk is based on a joint work with Ricardo Almeida and Agnieszka B. Malinowska.
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Abstract

The main objective of this paper is to estimate non-parametrically the quantiles of
a conditional distribution when the sample is considered as an α-mixing sequence.
First of all, a kernel type estimator for the conditional cumulative distribution func-
tion (cond-cdf) is introduced. Afterwards, we give an estimation of the quantiles by
inverting this estimated cond-cdf, the asymptotic properties are stated when the ob-
servations are linked with a single-index structure. The pointwise almost complete
convergence and the uniform almost complete convergence (with rate) of the kernel
estimate of this model are established. This approach can be applied in time series
analysis. For that, the whole observed time series has to be split into a set of func-
tional data, and the functional conditional quantile approach can be employed both
in foreseeing and building confidence prediction bands.
This talk is based on a joint work with Amina Angelika Bouchentouf and Souad
Mekkaoui
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Abstract

Laguerre-Hahn affine orthogonal polynomials on the unit circle are related to Cara-
théodory functions, F , that satisfy first order differential equations with polynomial
coefficients zAF ′ = CF + D. Well-known families of these polynomials include the
semi-classical orthogonal polynomials on the unit circle [2, 4, 6] as well as some of
their perturbations, such as the ones studied in [1, 3, 5, 8].
In this talk one derives recurrences for the reflection coefficients of Laguerre-Hahn
affine orthogonal polynomials on the unit circle, including a form of the discrete
Painlevé equations dPV . The technique is based on the knowledge of the first order
differential equation for the Carathéodory function, combined with a re-interpretation,
in the formalism of matrix Sylvester equations, of compatibility conditions for the
differential systems satisfied by the polynomials.
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Abstract

In this paper we study the asymptotic behavior of the positive solutions of the system
of two difference equations

xn+1 = ayn + bxn−1e
−yn , yn+1 = cxn + dyn−1e

−xn , n = 0, 1, . . .

where a, b, c, d are positive constants and the initial values x−1, x0, y−1, y0 are positive
numbers.
This talk is based on a joint work with Prof. G. Papaschinopoulos and Dr. N. Fotiades
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Abstract

The purpose of this talk is to present some results concerning k-dimensional system
of neutral difference equations with delays in the following form







∆
(

xi(n) + pi(n)xi(n− τi)
)

= ai(n) fi(xi+1(n− σi)) + gi(n)

∆
(

xk(n) + pk(n)xk(n− τk)
)

= ak(n) fk(x1(n− σk)) + gk(n),

where i = 1, . . . , k−1. Sufficient conditions for the existence of nonoscillatory bounded
solutions of the above system with various (pi(n)), i = 1, . . . , k, k ≥ 2 will be pre-
sented.
Joint work with Ma lgorzata Migda and Ma lgorzata Zdanowicz.
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Abstract

Families of stunted sawtooth maps have been used as models to study related fami-
lies of differentiable maps, since they are closely related with symbolic dynamics and
are rich enough to encompass in a canonical way all possible kneading data and all
possible itineraries. On the other hand, considered as gap maps, they have been used
in the applications as models of systems of communication with chaos. In this talk
we will consider a family of 2-periodic non autonomous dynamical systems, generated
by the alternate iteration of two stunted sawtooth tent maps and study its bifur-
cation skeleton. We will describe the bifurcation phenomena along and around the
bones accomplished with the combinatorial data furnished by the respective symbolic
dynamics.
This talk is based on a joint work with Teresa Silva and J. Leonel Rocha.
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Abstract

We study a family of non autonomous systems with period 2, generated by the se-
quential iteration of two stunted sawtooth maps. Using the concepts of symbolic dy-
namics, renormalization and star product in the non autonomous setting, we compute
the convergence rates of sequences of points in the parameter space. These sequences
are obtained through consecutive star products/renormalizations, generalizing in this
way the Feigenbaum sequences. We show that the convergence rates are independent
of the initial point, thus, concluding that the non autonomous setting has universal
properties of the type founded by Feigenbaum in families of autonomous systems.
This talk is based on a joint work with Lúıs Silva, CIMA–UE, Évora, Portugal, and
Sara Fernandes, Department of Mathematics, Universidade de Évora, Rua Romão
Ramalho, 59, 7000-671 Évora, Portugal.
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Abstract

We present the non-standard finite difference method of the Mickens type. The essence
of the non-standard difference schemes is preserving the significant properties of the
original problems and/or their solutions such as, for example, positivity, monotonic-
ity, boundedness, existence and stability of equilibrium points, etc. We construct
the fractional non-standard finite difference scheme which preserves positivity and we
analyze the convergence of the method. Finally, we use this method in the numeri-
cal analysis of the stability of solutions of the fractional prey-predator model to its
equilibrium points..
This talk is based on a joint work with Jacky Cresson (Laboratoire de Mathématiques
Appliquées de Pau, Université de Pau et des Pays de l’Adour, Pau Cedex, France).
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Abstract

In this paper, we study sufficient conditions for the oscillatory and asymptotic behav-
ior of the following higher-order half-linear delay dynamic equation

[

p (t) +
(

(x (t) + q (t)x (τ (t)))
∆m−1

)α]∆

+ r (t)xβ (ψ (t)) = 0, t ≥ t0

where we assume
∞
∫

t0

1

p
1

α (t)
∆t < ∞. The main theorem of this paper improves some

previously obtained results and thus presents a new approach.
This talk is based on a joint work with Veysel Fuat Hatipoğlu.
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